NewStats: 3,263,866 , 8,181,654 topics. Date: Sunday, 08 June 2025 at 11:22 AM 2r65256z3e3g |
(4) (5) (of 5 pages)
![]() |
if a<b<0 and a^2+b^2=4ab, evaluate a+b/a-b.
|
![]() |
from benbuks question integral [sqrt(1+(sqrtx)]/x dx SOLUTIION. FOR THE INTEGRAND [SQRT(SQRTX)+1]/Xdx by substitution method let u= sqrt(x) , x=u^2 du/dx=1/2sqrt(x)..... dx=2sqrt(x)du integral [sqrt(u+1)*2sqrt(x) ]du/u^2 recall that sqrt(x)=u integral [sqrt(u+1)*2u] du/u^2 2 integral sqrt(u+1)du/u For the integral sqrt(u+1)du/u.... substitute s=sqrt(u+1)... ds/du= 1/2sqrt(u+1).....du= 2sqrt(u+1)ds...... from s=sqrt(u+1).... s^2=u+1.....s^2-1=u 2 integral s(2s)ds/s^2-1........2 integral2s^2ds/s^2-1.......4 integral s^2ds/s^2-1...... For the integrand s^2/s^2-1, do long division we have this 4 integral [1+1/2(s-1)-1/2(s+1)]ds 4 [integral ds +1/2 integral ds/(s-1) -1/2 integral ds/(s+2)] 4s+2ln(s-1)-2ln(s+1)+C put back s = sqrt(u+1). we have (4sqrt(u+1))+(2lnsqrt(u+1)-1) - (2lnsqrt(u+1)+1)+C substitute u=sqrt(x) we have 4sqrt[sqrt(x)+1]+2lnsqrt[sqrt(x)+1]-1 -2lnsqrt[sqrt(x)+1]+1 +C which is equivalent to 4sqrt[sqrt(x)+1] -4tanh^-1[sqrt[sqrt(x)+1]. all is well. |
![]() |
@ d citizen. From y=x^x^x. dy/dx=x^x^x[x^x(lnx+1)lnx+x^x/x]. Now y=x^(x^x^x). take log of both sidés. lny=lnx^(x^x^x). lny=x^x^xlnx. d/dx(lny)=d/dx(x^x^xlnx). dy/dx(1/y)=udv/dx+vdu/dx. Take u=x^x^x du/dx=x^x^x[x^x(lnx+1)lnx+x^x/x]. And v =lnx dv/dx=1/x. dy/dx=y[x^x^x/x+lnx(x^x^x[x^x(lnx+1)lnx+x^x/x]. now recall that y=x^x^x^x. Therefore dy/dx=x^x^x^x[x^x^x/x+lnx(x^x^x[x^x(lnx+1)lnx+x^x/x]. similarly for y=x^(x^x^x^x) Take log of both sides. lny=x^x^x^xlnx d/dx(lny)=d/dx(x^x^x^xlnx). Take u=x^x^x^x du/dx=x^x^x^x[x^x^x/x+lnx(x^x^x[x^x(lnx+1)lnx+x^x/x]. And take v=lnx dv/dx=1/x . Using product rule. We av (1/y)dy/dx=x^x^x^x/x+lnx(x^x^x^x[x^x^x/x+lnx(x^x^x[x^x(lnx+1)lnx+x^x/x]. dy/dx=y[x^x^x^x/x+lnx(x^x^x^x[x^x^x/x+lnx(x^x^x[x^x(lnx+1)lnx+x^x/x]]. But y=x^x^x^x^x. Therefore dy/dx=x^x^x^x^x([x^x^x^x/x+lnx(x^x^x^x[x^x^x/x+lnx(x^x^x[x^x(lnx+1)lnx+x^x/x]]). For easier understanding let y=X^x^x^x^x. u=x^x^x^x. v=x^x^x. w=x^x. Hence dy/dx=yu/x+uvy[(w(lnx+1)lnx]+w/x+w/x. All is well. |
![]() |
@ d citizen i have the solution to ur questiön 3^x+4^x=5^x. Buh is a graphical solution which indicate dat x=2. I dnt knw hw to paste it ön nairaland. |
![]() |
@ d citizen hint on how to solve y=x^x^x^x^x. soln. let me start 4rm y=x^x. Take log of both sides. lny=xlnx. d/dx(lny)=d/dx(xlnx) 1/y(dy/dx)=lnx+1. dy/dx=y(lnx+1). Recall that y=x^x. dy/dx=x^x(lnx+1). Similarly for y=x^(x^x). Take log of both sides. We av lny=lnx^(x^x). Which implies. lny=x^xlnx. d/dx(lny)=d/dx(x^xlnx). dy/dx(1/y)= d/dx(x^x)*lnx+d/dx(lnx)x^x. now recall that d/dx(x^x)=x^x(lnx+1) and d/dx(lnx)=1/x. dy/dx(1/y)=x^x(lnx+1)lnx+1/x*x^x. dy/dx=y[x^x(lnx+1)lnx+x^-1+x]. Recall that y=x^x^x. Hence we av dy/dx=x^x^x[x^x(lnx+1)lnx+x^(x-1)]. use this method for y=x^(x^x^x) and y=x^(x^x^x^x). All is well. |
![]() |
d/dx(x^x^x^x^x)=x^x^x^x^x+x^x^x[x^x^xlogx(x^xlogx(1/x+log^2x+logx)+1/x)+1/x].
|
![]() |
-------------------------------------------------------------------------------- Derivative: d\/dx(x^(x^(x^(x^x)))) = x^(x^(x^(x^x))) (x^(x^(x^x)-1)+x^(x^(x^x)) log(x) (x^(x^x-1)+x^(x^x) log(x) (x^(x-1)+x^x log(x) (log(x)+1))) dx(x^(x^(x^(x^x)))) Express x^(x^(x^(x^x))) as a power of e: x^(x^(x^(x^x))) = e^(log(x^(x^(x^(x^x))))) = e^(x^(x^(x^x)) log(x)) = d\/dx(e^(x^(x^(x^x)) log(x))) Using the chain rule, d\/dx(e^(x^(x^(x^x)) log(x))) = de^u/du* du\dx, where u = x^(x^(x^x)) log(x) and d\du(e^u) = e^u = d\dx(x^(x^(x^x)) log(x))) e^(x^(x^(x^x)) log(x)) Express e^(x^(x^(x^x)) log(x)) as a power of x: e^(x^(x^(x^x)) log(x)) = e^(log(x^(x^(x^(x^x))))) = x^(x^(x^(x^x))) = x^(x^(x^(x^x))) d\/dx(x^(x^(x^x)) log(x)) Use the product rule, d/dx(u,v) = v du/dx+udv)/dx, where u = x^(x^(x^x)) and v = log(x) = log(x) d\/dx(x^(x^(x^x)))+x^(x^(x^x)) d\/dx(log(x)) x^(x^(x^(x^x))) Express x^(x^(x^x)) as a power of e: x^(x^(x^x)) = e^(log(x^(x^(x^x)))) = e^(x^(x^x) log(x)) = x^(x^(x^(x^x))) (x^(x^(x^x)) (d/dx(log(x)))+d/dx(e^(x^(x^x) log(x))) log(x)) Using the chain rule, d/dx(e^(x^(x^x) log(x))) =de^u/du* du\dx,where u = x^(x^x) log(x) and d/du(e^u) = e^u = x^(x^(x^(x^x))) (x^(x^(x^x)) (d/dx(log(x)))+d/dx(x^(x^x) log(x)) e^(x^(x^x) log(x)) log(x)) Express e^(x^(x^x) log(x)) as a power of x: e^(x^(x^x) log(x)) = e^(log(x^(x^(x^x)))) = x^(x^(x^x)) = x^(x^(x^(x^x))) (x^(x^(x^x)) d/dx(x^(x^x) log(x)) log(x)+x^(x^(x^x)) (d/dx(log(x)))) Use the product rule, d/dx(u, v) = v ( du)/( dx)+u ( dv)/( dx), where u = x^(x^x) and v = log(x) = x^(x^(x^(x^x))) (x^(x^(x^x)) (d\/dx(log(x)))+log(x) d\/dx(x^(x^x))+x^(x^x) d\/dx(log(x)) x^(x^(x^x)) log(x)) Express x^(x^x) as a power of e: x^(x^x) = e^(log(x^(x^x))) = e^(x^x log(x)) = x^(x^(x^(x^x))) (x^(x^(x^x)) (d/dx(log(x)))+x^(x^(x^x)) log(x) (x^(x^x) (d/dx(log(x)))+d/dx(e^(x^x log(x))) log(x))) The derivative of log(x) is 1/x = x^(x^(x^(x^x))) (x^(x^(x^x)) log(x) (x^(x^x) (d/dx(log(x)))+log(x) (d/dx(e^(x^x log(x)))))+1/x x^(x^(x^x))) Simplify the expression gives = x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (x^(x^x) (d/dx(log(x)))+log(x) (d/dx(e^(x^x log(x))))))\nThe derivative of log(x) is 1\/x:\n = x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (log(x) (d\/dx(e^(x^x log(x))))+1\/x x^(x^x)))\nSimplify the expression:\n = x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (x^(-1+x^x)+log(x) (d\/dx(e^(x^x log(x))))))\nUsing the chain rule, d\/dx(e^(x^x log(x))) = ( de^u)\/( du) ( du)\/( dx), where u = x^x log(x) and ( d)\/( du)(e^u) = e^u:\n = x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (x^(-1+x^x)+d\/dx(x^x log(x)) e^(x^x log(x)) log(x)))\nExpress e^(x^x log(x)) as a power of x: e^(x^x log(x)) = e^(log(x^(x^x))) = x^(x^x):\n = x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (x^(-1+x^x)+x^(x^x) d\/dx(x^x log(x)) log(x)))\nUse the product rule, d\/dx(u v) = v ( du)\/( dx)+u ( dv)\/( dx), where u = x^x and v = log(x):\n = x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (x^(-1+x^x)+log(x) d\/dx(x^x)+x^x d\/dx(log(x)) x^(x^x) log(x)))\nExpress x^x as a power of e: x^x = e^(log(x^x)) = e^(x log(x)):\n = x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (x^(-1+x^x)+x^(x^x) log(x) (x^x (d\/dx(log(x)))+d\/dx(e^(x log(x))) log(x))))\nUsing the chain rule, d\/dx(e^(x log(x))) = ( de^u)\/( du) ( du)\/( dx), where u = x log(x) and ( d)\/( du)(e^u) = e^u:\n = x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (x^(-1+x^x)+x^(x^x) log(x) (x^x (d\/dx(log(x)))+d\/dx(x log(x)) e^(x log(x)) log(x))))\nExpress e^(x log(x)) as a power of x: e^(x log(x)) = e^(log(x^x)) = x^x:\n = x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (x^(-1+x^x)+x^(x^x) log(x) (x^x d\/dx(x log(x)) log(x)+x^x (d\/dx(log(x))))))\nUse the product rule, d\/dx(u v) = v ( du)\/( dx)+u ( dv)\/( dx), where u = x and v = log(x):\n = x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (x^(-1+x^x)+x^(x^x) log(x) (x^x (d\/dx(log(x)))+log(x) d\/dx(x)+x d\/dx(log(x)) x^x log(x))))\nThe derivative of x is 1:\n = x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (x^(-1+x^x)+x^(x^x) log(x) (x^x (d\/dx(log(x)))+x^x log(x) (x (d\/dx(log(x)))+1 log(x)))))\nThe derivative of log(x) is 1\/x:\n = x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (x^(-1+x^x)+x^(x^x) log(x) (x^x log(x) (log(x)+x (d\/dx(log(x))))+1\/x x^x)))\n Simplify the expression= x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (x^(-1+x^x)+x^(x^x) log(x) (x^(-1+x)+x^x log(x) (log(x)+x (d\/dx(log(x)))))))\nThe derivative of log(x) is 1\/x:\n = x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (x^(-1+x^x)+x^(x^x) log(x) (x^(-1+x)+x^x log(x) (log(x)+1\/x x))))\n Simplify the expression: Answer: = x^(x^(x^(x^x))) (x^(-1+x^(x^x))+x^(x^(x^x)) log(x) (x^(-1+x^x)+x^(x^x) log(x) (x^(-1+x)+x^x log(x) (1+log(x))))) -------------------------------------------------------------------------------- |
![]() |
x + y = 5.......(1) x^x + y^y =31.......(2) from eqn(1), x=5-y, hence we substitute this value for x in eqn(2). (5-y)^(5-y) + y^y = 31.......(3) now, we have reduced the problem to what value of y that must be inserted in eqn (3) to obtain 31. a thorough look at eqns (1) & (2) shows that the values of x & y must be positive integers within the range 0<x<5 and 0<y<5 clearly, y=3 i.e (5-3)^(5-3) + 3^3 2^2 + 27 4+27=31 now that we have established that y=3, we shall substitute the value of y in eqn(1) to get x recall that x+y=5 therefore; x+3=5 or x=5-3=2 hence, x=2 when y=3. therefore we av (2,3) |
![]() |
[color=#990000][/color]
|
![]() |
prove that 1=2 solution 1 can never be equal to 2. hence the answer is FALSE. [color=#770077][/color] |
![]() |
integral e^tanxdx solution using wolfram mathematical online integrator -1/2ie^-id[(e^2iEi(tanx-i)-Ei(tanx+i)]. |
![]() |
I don't think there's an analytical solution. for integral e^tanxdx If you try it with Wolfram's online integrator, it gives the result in of the Exponential Integral Ei function, which I believe is transcendental. |
![]() |
QUESTION F(X)=3/X^3. Using ist principle method SOLUTION Let y=3/x^3 i will let my change in x =h and change in y =k y+k=x+h y+k=3/(x+h)^3 y+k=3/x^3+3x^2h+3xk^2+k^3 subtract y from both sides y+k-y=3/x^3+3x^2h+3xh^2+h^3 -y but y=3/x^3 k=3/x^3+3x^2h+3xh^2+h^3 -3/x^3 taking the l.c.m k=3x^3 - 3(x^3+3x^2h+3xh^2+h^3) /x^3(x^3+3x^2h+3xh^2+h^3) k=3x^3 - 3x^3-9x^2h-9xh^2-3h^3 /x^3(x^3+3x^2h+3xh^2+h^3) k=-9x^2h-9xh^2-3k^3/x^3(x^3+3x^2h+3xh^2+h^3) divide through by change in x=h k/h= -9x^2h-9xh^2-3h^3/x^3(x^3+3x^2h+3xh^2+h^3)*1/h k/h= -9x^2-9xh-3h^2/x^3(x^3+3x^2h+3xh^2+h^3) k/h=dy/dx=lim h---->0[-9x^2-9xh-3h^2/x^3(x^3+3x^2h+3xh^2+h^3)] dy/dx=-9x^2/x^3(x^3) dy/dx=-9x^2/x^6=-9/x^4 therefore dy/dx=-9x^-4. good luck QUESTION Lim--->x=pi(sin(picosx)/(x-pi)^2) solution we all know that pi=180 putx=pi=180 we obtain 0/0. which is indeterminate. using l'hopitals rule which says limx--->a (f'(x)/g'(x)) when you differentiate sin(picosx) w.r.t. i.e f'(x)=cos(picosx)(-pisinx) g'(x)= 2(x-pi) limx--->pi[cos(picosx)(-pisinx)/2(x-pi)] when we put x=pi we obtain 0/0 which is indeterminate we will differentiate again untill we obtain a real value f''(x)=cos(picosx)(-picosx)+(-pisinx)(sin(picosx))(pisinx) g''(x)= 2 limx---->pi[(cos(picosx)(-picosx)+(-pisinx)(sin(picosx)(pisinx)/2] putx=pi=180 we obtain [(-1)(180)+0/2] which implies -90 or -pi/2.
|
![]() |
1. find the orthogonal trajectory of the curve y^3+3x^2y=c1.
|
![]() |
the real numbers a,b,c satisfy a nt equal to b and 2009(a-b)+ sqrt 2009(b-c)+(c-a)=0. Find the value of (c-b)(c-a)/(a-b)^2. Solution. Let x= sqrt 2009. Also x^2= 2009. puttin it in the eqn gives x^2(a-b+x(b-c)+(c-a)=0. a nt equal to b => this eqn is a quadratic eqn. Obviously x=sqrt 2009 and 1 are the two root of this quadratic eqn. Nw recall dat. sum of x =-b/a product of root =c/a. Sum of x. => sqrt 2009 +1=c-b/a-b. Also product of root => sqrt 2009*1= c-a/a-b. Hence (c-b)(c-a)/(a-b)(a-b). =>(sqrt 2009 +1)(sqrt 2009) =2009+sqrt 2009. |
![]() |
well done my oga, u are great. We av two ways to solve d questn. Ur method is ok. Here is another way. let y=x+1, x=y-1. Put x=y-1 in d eqn gives (y-2)^4+(y+2)^4. (y^2-4y+4)^2+(y^2+4y+4)^2=82. Reduces to y^4+24y^2-25=0 (y^2+25)(y^2-1)=0. since y^2+25>0 then y^2-1=0. So y=1 or y=-1. But recall that x=y-1. Hence x=0 or x=-2. We are going to take mathematics to another level. |
![]() |
1. Solve the equation. (x-1)^4+(x+3)^4=82. 2. The real numbers a,b,c satisfy a<>b and 2009[a-b]+sqrt(2009)[b-c]+[c-a]=0. Find the value of (c-b)(c-a)/(a-b)^2. 3. Solve the systems of eqn. x^2+xy+y^2=84...eqn 1 and x+sqrt(xy)+y=14...eqn 2. |
![]() |
3). Expand f(x,y)=x^2e^y at the point (1,0) up to in second degree. solution to question 3. we are going to some language here says f subscript x=> fx f subscript y=> fy. Let h=change in x => h=x-xo. And Let k=change in y => k= y-yo. (1,0)=> xo=1 and yo=0. h=(x-1) and k=y-0=y. i.e k=y. f(x,y)=x^2e^y at f(1,0)= 1. fx=2xe^y at f(1,0)=2. fxx=2e^y at f(1,0)=2. fxy=2xe^y at f(1,0)=2. fy=x^2e^y at f(1,0)=1. fyy=x^2e^y at f(1,0)=1. Now recall the formula of fuctions of two variables (taylor series nd maclaurin series). Pls take Note of this 4mula. f(x,y)= f(xo,yo)+hfx(xo,yo)+kfy(xo,yo)+1/2![h^2fxx(xo,yo)+2hkfxy(xo,yo)+k^2fyy(xo,yo)]+1/3![h^3fxxx(xo,yo)+3h^2kfxxy(xo,yo)+3k^2hfyyx(xo,yo)+k^3fyyy(xo,yo)]. From the questn we are asked to stop at in second degree. So we neglect the third degree. By putting al d values we av. Dnt 4get dat h=x-1 and k=y. f(x,y)=1+(x-1)(2)+1/2![(x-1)^2(2)+2(x-1)(y)(2)+y^2(1)]. Try to simplify dis. We ave. f(x,y)=x^2-y+2xy+v^2/2. Quote: Always take the high road. |
![]() |
2). Solve (8y-x^2y)dy/dx+(x-xy^2)=0. Hint: exact eqn. solution to questn 2. Q(x,y)dy/dx+P(x,y)=0...... Q(x,y)dy+P(x,y)dx=0. For the eqn to be exact it must satisfy dis dP(x,y)/dy=dQ(x,y)/dx. P(x,y)=du/dx Q(x,y)=du/dy. Q(x,y)=8y-x^2y P(x,y)=x-xy^2. dQ(x,y)/dx=-2xy dP(x,y)/dy=-2xy. Hence the eqn is exact. du/dx=P(x,y)=x-xy^2...... du/dx=x-xy^2. integratin both sides w.r.t x U=x^2/2-x^2y^2/2+T(y). Where T(y) is an arbitrary function of y. differentiating U w.r.t. y du/dy=-x^2y+T'(y). du/dy=Q(x,y)=8y-x^2y. -x^2y+T'(y)=8y-x^2y. T'(y)=8y. Integrate w.r.t y. T(y)=4y^2+C. But U=x^2/2-x^2y^2/2+T(y). U(x,y)=x^2/2-x^2y^2/2+4y^2+C. OR U(x,y)=x^2(1-y^2)/2 +4y^2+C. check dis @ honey kip it up. |
![]() |
1). solve. (3xy+3y-4)dx+(x+1)^2dy=0. solution to Question 1. (x+1)^2dy=-(3xy+3y-4)dx..... dy/dx=-(3xy+3y-4)/(x+1)^2..... dy/dx+3xy+3y-4/(x+1)^2=0..... dy/dx+3xy/(x+1)^2+3y/(x+1)^2-4/(x+1)^2=0.... dy/dx+3xy+3y/(x+1)^2 =4/(x+1)^2. dy/dx+3y(x+1)/(x+1)^2=4/(x+1)^2. dy/dx+3y/(x+1)=4/(x+1)^2. Now recall that dy/dx+P(x)y=Q(x). Which is called Linear equation Or Integrating Factor (I.F). P(x)=3/(x+1) and Q(x)=4/(x+1)^2. I.F= e^§P(x)dx. Where § rep. integral symbol. I.F= e^§3dx/(x+1) I.F= e^3ln(x+1) = (x+1)^3. I.F= (x+1)^3. y(I.F)= §Q(I.F)dx y(x+1)^3= § 4/(x+1)^2*(x+1)^3 dx. y(x+1)^3= 4§(x+1)dx. y(x+1)^3=4[(x+1)^2/2]+C. y(x+1)^3=2[(x+1)^2]+C. divide both sides by (x+1)^3. y=2/(x+1) +C/(x+1)^3. OR y=2(x+1)^-1 + C(x+1)^-3. Hmmm all is well. Check dat @ honey. U tried. 1 Like |
![]() |
Dis questions goes to my fellow mathematician.(Break fast) 1). Solve (3xy+3y-4)dx+(x+1)^2dy=0. 2). Solve (8y-x^2y)dy/dx+(x-xy^2)=0.hint: exact equation 3). Expand f(x,y)=x^2e^y at the point (1,0) up to in second degree. |
![]() |
integral sqrt 5x^2 dx. soln. We all know that sqrt of 5x^2 =>(sqrt5)x. By putting it back in d questn. We av integral (sqrt5)x dx. sqrt5(x^2/2). |
![]() |
integral x^2/x^3+5 dx. Soln. let u=x^3+5. du/dx=3x^2. dx=du/3x^2. By substitution we ave. Integral x^2/u*du/3x^2. 1/3 integral 1/udu 1/3(lnu)+C. Recall that u=x^3+5. 1/3[ln(x^3+5)]+C. |
![]() |
integral xarcsinx dx. solution arcsinx implies sin@=x. drawing a right angle triangle with angle @. opp=x, hyp=1 and adj=sqrt(1-x^2). recalling from our SOHCAHTOA. Cos@=adj/hyp= sqrt(1-x^2). @= arcsinx. d@/dx= 1/ sqrt(1-x^2). dx=sqrt(1-x^2)d@. recall dat sqrt(1-x^2)=cos@. now substitute. we av integral @sin@cos@d@ let u=@. du/d@=1 and v=sin@cos@. dv= sin^2@/2 using integration by part uv- integral vdu @sin^2@/2 - integral sin^2@/2 d@ @sin^2@/2 - 1/2 integral sin^2@d@. @sin^2@/2 - 1/2 integral 1(1-cos2@)/2 d@ @sin^2@/2 - 1/4 [(integral d@ - integral cos2@d@)] @sin^2@/2 - 1/4 (@-sin2@/2) @sin^2@/2 - 1/4@+sin2@/8. now recall that sin2@=2sin@cos@ @sin^2@/2 -@/4 + 2sin@cos@/8 @sin^2@/2 - @/4 +sin@cos@/4 substituting we av x^2arcsinx/2 - arcsinx/4 + xsqrt(1-x^2)/4 1/4[(2x^2-1)arcsinx+xsqrt(1-x^2)}+C |
(4) (5) (of 5 pages)
(Go Up)
Sections: How To . 58 Disclaimer: Every Nairaland member is solely responsible for anything that he/she posts or s on Nairaland. |